Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 241: 107650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360299

ABSTRACT

Particulate matter (PM) comprises a hazardous mixture of inorganic and organic particles that carry health risks. Inhaling fine PM particles with a diameter of ≤2.5 µm (PM2.5) can promote significant lung damage. Hederacolchiside A1 (HA1) exhibits notable in vivo antitumor effects against various solid tumors. However, our understanding of its therapeutic potential for individuals with PM2.5-induced lung injuries remains limited. Here, we explored the protective properties of HA1 against lung damage caused by PM2.5 exposure. HA1 was administered to the mice 30 min after intratracheal tail vein injection of PM2.5. Various parameters, such as changes in lung tissue wet/dry (W/D) weight ratio, total protein/total cell ratio, lymphocyte counts, inflammatory cytokine levels in bronchoalveolar lavage fluid (BALF), vascular permeability, and histology, were assessed in mice exposed to PM2.5. Our data showed that HA1 mitigated lung damage, reduced the W/D weight ratio, and suppressed hyperpermeability caused by PM2.5 exposure. Moreover, HA1 effectively decreased plasma levels of inflammatory cytokines in those exposed to PM2.5, including tumor necrosis factor-α, interleukin-1ß, and nitric oxide, while also lowering the total protein concentration in BALF and successfully alleviating PM2.5-induced lymphocytosis. Furthermore, HA1 significantly decreased the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation primary response (MyD) 88, and autophagy-related proteins LC3 II and Beclin 1 but increased the protein phosphorylation of the mammalian target of rapamycin (mTOR). The anti-inflammatory characteristics of HA1 highlights its potential as a promising therapeutic agent for mitigating PM2.5-induced lung injuries by modulating the TLR4-MyD88 and mTOR-autophagy pathways.


Subject(s)
Lung Injury , Mice , Animals , Lung Injury/chemically induced , Lung Injury/drug therapy , Particulate Matter/toxicity , Particulate Matter/metabolism , Toll-Like Receptor 4/metabolism , Lung , TOR Serine-Threonine Kinases/toxicity , TOR Serine-Threonine Kinases/metabolism , Cytokines/metabolism , Mammals/metabolism
2.
Sci Total Environ ; 921: 171101, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387595

ABSTRACT

Recent epidemiological and animal studies have indicated that ambient fine particulate matter (PM2.5) exposure during pregnancy is closely associated with intrauterine growth restriction (IUGR). However, the underlying mechanisms remain to be revealed. In this study, we found that gestational exposure to PM2.5 significantly decreased fetal weight and crown-rump length in mice, accompanied by insufficient placental trophoblast syncytialization and increased expression of progranulin (PGRN) in mice placenta. Administering PGRN neutralizing antibody to pregnant mice alleviated growth restriction and insufficient placental trophoblast syncytialization caused by PM2.5, accompanied with suppressed activation of the mTOR signaling pathway. Furthermore, in vitro experiments using human placental BeWo cells showed that 10 µg·mL-1 PM2.5 activated PGRN/mTOR signaling and suppressed forskolin-induced cell fusion, which was blocked by knockdown of PGRN. Taken together, our results demonstrated that PM2.5 exposure during pregnancy inhibited placental trophoblast syncytialization by activating PGRN/mTOR signaling, leading to abnormal placental development and IUGR. This study reveals a novel mechanism underlying the developmental toxicity of PM2.5 exposure during pregnancy.


Subject(s)
Placenta , Trophoblasts , Pregnancy , Female , Humans , Animals , Mice , Placenta/metabolism , Progranulins/toxicity , Progranulins/metabolism , Trophoblasts/metabolism , Signal Transduction , Fetal Development , Fetal Growth Retardation , TOR Serine-Threonine Kinases/toxicity , TOR Serine-Threonine Kinases/metabolism
3.
Aging (Albany NY) ; 2(8): 487-503, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20739737

ABSTRACT

Deregulated nutrient signaling plays pivotal roles in body ageing and in diabetic complications; biochemical cascades linking energy dysmetabolism to cell damage and loss are still incompletely clarified, and novel molecular paradigms and pharmacological targets critically needed. We provide evidence that in the retrovirus-packaging cell line HEK293-T Phoenix, massive cell death in serum-free medium is remarkably prevented or attenuated by either glucose or aminoacid withdrawal, and by the glycolysis inhibitor 2-deoxy-glucose. A similar protection was also elicited by interference with mitochondrial function, clearly suggesting involvement of energy metabolism in increased cell survival. Oxidative stress did not account for nutrient toxicity on serum-starved cells. Instead, nutrient restriction was associated with reduced activity of the mTOR/S6 Kinase cascade. Moreover, pharmacological and genetic manipulation of the mTOR pathway modulated in an opposite fashion signaling to S6K/S6 and cell viability in nutrient-repleted medium. Additionally, stimulation of the AMP-activated Protein Kinase concomitantly inhibited mTOR signaling and cell death, while neither event was affected by overexpression of the NAD+ dependent deacetylase Sirt-1, another cellular sensor of nutrient scarcity. Finally, blockade of the mTOR cascade reduced hyperglycemic damage also in a more pathophysiologically relevant model, i.e. in human umbilical vein endothelial cells (HUVEC) exposed to hyperglycemia. Taken together these findings point to a key role of the mTOR/S6K cascade in cell damage by excess nutrients and scarcity of growth-factors, a condition shared by diabetes and other ageing-related pathologies.


Subject(s)
Cell Survival/physiology , Food Deprivation/physiology , Intracellular Signaling Peptides and Proteins/physiology , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/physiology , Antimetabolites/administration & dosage , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Culture Media, Serum-Free , Deoxyglucose/administration & dosage , HEK293 Cells , Humans , Mitochondria/physiology , Oxidative Stress/physiology , Ribosomal Protein S6/physiology , Ribosomal Protein S6 Kinases/physiology , Signal Transduction/physiology , Sirtuin 1/physiology , TOR Serine-Threonine Kinases/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...